No services found
No Products found
Developing antibodies against cancer targets? Discover the world’s first Human Cancer Phage Display Library
Choose the fastest and most efficient way to get your nanobody production thanks to our unique antibody phage display libraries and expertise! Our advanced monoclonal antibody production platform offers the possibility to produce your own alpaca, camel, or llama VHH against any type of antigen and without any restriction of use. Our unique platform of antibody phage display adapted to therapeutic applications ensures you always receive the most relevant binders for your target and application.
NEW!
Wide variety of species
Our camelid antibody production platform allows you to choose between different species (Alpaca, llama, camel…)
Naïve or immune library
Use our naive libraries or develop your own phage display immune library.
Immunization with any type of antigen
Peptide, protein, hapten, whole cell… We design and produce/synthesize any possible antigens for you.
Binders guaranteed
We guarantee at least 3 unique binders to your antigen..
IP free
You get the full ownership of the VHH sequence generated!
Your antibody in 7 weeks
Get your camelid antibody production in less than 7 weeks.
Very high diversity camelid antibody libraries
Our VHH libraries contain at least 109 different variants.
Build your own library!
Get the full ownership of your own immune library.
Antigen design
Immune library
Immune library construction
Naive library
Library screening and biopanning
ELISA screening of single phage binders
DNA extraction & antibody sequencing
VHH engineering (optional)
Custom assay development
Therapeutic antibody production
Nanobodies present numerous advantages to be exploited for therapeutic, diagnostic, and research applications. This includes:
Nanobodies offer several advantages compared to full-length antibodies. The advantages discussed above, pave the way to the development of new therapeutics.
Coupled with the screening power of the phage display technology, nanobodies can be generated against a multitude of antigens with different properties. Despite proteins and peptides being the most widely used antigens for nanobody production, there is an increasing interest in generating nanobodies against untapped epitopes.
Some of these untapped epitopes are typically hard to target due to their structural complexity; however, if cell-based phage display is used for nanobody generation, many new biologically relevant treatments can be brought to the clinic.
Full-length mAbs are traditionally used for their ability to evoke ADCC or CDC via their Fc receptor domain. These properties are highly desirable when developing monoclonal antibody therapies for cancer.
However, their large size becomes a disadvantage when it comes to difficult-to-reach targets. In contrast to full-length IgGs, nanobodies cannot evoke ADCC or CDC but can be used as antagonistic drugs to immunomodulate and control tumor cell proliferation and can induce apoptosis.
Other promising approaches include the conjugation of nanobodies to various entities such as effector domains, radionuclides, or even small molecule covered nanoparticles.
VHH can prevent the spread of viruses by interfering at different steps of the viral replication cycle. Intrabodies also represent a promising approach for their capacity to target virus replication at an early stage. However, the feasibility of this approach in patients limits its use. For this reason, coupling of nanobodies with cell penetrating agents were developed (e.g. anti-HCV nanobody-penetrating conjugate).
Nanobodies can also be used to combat bacterial infections. Several elegant strategies implying the use of VHH were already developed.
Up to date, there is no treatment to cure neurodegenerative diseases. Only symptomatic treatments are available on the market. Thanks to their unique selectivity and their capacity to cross the blood-brain barrier, nanobodies represent an interesting approach to overcome these challenges. Several trials involving nanobody production to cure Alzheimer’s disease are already well documented. Even though its origin is still not well understood yet, several hypotheses about Alzheimer’s disease pathogenesis exist. One of them involves the deposition of extracellular amyloid plaques leading to neuronal death. Thus, several biomolecules involved in amyloid plaques formation were considered as potential nanobody targets. This includes free Aβ peptide or BACE-1…
Similar strategies were employed to target α-synuclein to cure Parkinson’s disease. Parkinson’s disease is characterized by misfolding of α-synuclein leading to the formation of aggregates and ultimately to death. Up to date, no solution allowed preventing α-synuclein aggregation but nanobodies remain a promising therapeutic approach.
This list is only a non-exhaustive overview of the nanobodies’ potential as a therapeutic agent. Other applications were already explored such as anti-inflammatory or anti-infectious treatment..
Camelid antibody production is also highly relevant for diagnostic applications such as imaging. The small size of VHH confers them unique advantages compared to conventional full length antibodies:
Got a question or need a quote? Message us and we'll get back to you 48 hours or less.
Your cart is currently empty.